جستجو در مقالات منتشر شده


4 نتیجه برای داده‌کاوی

مینا کیهانی، احمد آقا‌کاردان،
دوره 4، شماره 11 - ( 3-1391 )
چکیده

هنگامی‌که شبکه‌های کامپیوتری ستون اصلی علم و اقتصاد شد، حجم زیادی از مستندات در دسترس قرار گرفتند. به همین منظور، برای استخراج اطلاعات مفید از روش‌های متن‌کاوی استفاده می‌شود. متن‌کاوی یک حوزه پژوهشی مهم در کشف اطلاعات ناشناخته، فرضیات، و حقایق جدید به‌وسیله استخراج اطلاعات از اسناد مختلف است. همچنین متن‌کاوی آشکار کردن اطلاعات پنهان با استفاده از روشی است که در یک طرف توانایی مقابله با تعداد زیادی کلمات و ساختارهایی در زبان طبیعی را نشان می‌دهد و از طرف دیگر اجازه مدیریت ابهام و شک را می‌دهد. علاوه بر آن، متن‌کاوی به عنوان داده‌کاوی متن بیان می‌شود که معادل با تجزیه و تحلیل متون است و به فرایند استخراج اطلاعات از متن می‌پردازد و اطلاعات با کیفیت بالا را از میان الگوها و فرایندها استخراج می‌کند. همچنین به عنوان داده‌کاوی متن یا کشف دانش از پایگاه ‌داده‌های متنی شناخته می‌شود و به فرایند استخراج الگوها یا دانش از اسناد متنی بیان می‌شود. روش تحقیق در این کار بدین صورت است که ابتدا به بررسی پژوهش‌های انجام شده در حوزه متن‌کاوی با تأکید بر روش‌ها و کاربردهای آن در آموزش الکترونیکی پرداخته شد. در طی این مطالعات، پژوهش‌های مرتبط در حوزه آموزش الکترونیکی طبقه‌بندی گردیدند. پس از طبقه‌بندی پژوهش‌ها، مسائل و راهکارهای مرتبط با مسائل مطرح شده در آن کارها، استخراج شدند. در همین راستا، در این مقاله ابتدا به تعریف متن‌کاوی پرداخته می‌شود. سپس فرایند متن‌کاوی و حوزه‌های کاربرد متن‌کاوی در آموزش الکترونیکی مورد بررسی قرار می‌گیرند. در ادامه روش‌های متن‌کاوی معرفی شده و تک تک این روش‌ها در حوزه آموزش الکترونیکی مطرح می‌گردد. در انتها ضمن استنتاج نکات مهم مطالعات انجام شده، مدلی جهت استخراج اطلاعات برای بهره‌برداری از روش‌های متن‌کاوی در یادگیری الکترونیکی پیشنهاد می‌شود.
،
دوره 5، شماره 17 - ( 12-1393 )
چکیده

داده‌کاوی که به عنوان استخراج دانش از پایگاه داده‌ها نیز شناخته می‌شود، روالی برای استخراج دانش ناشناخته از داده است. کاوش اسناد بر اساس روش‌های داده کاوی به استخراج اطلاعات و دانش از اسناد می‌پردازد. خوشه‌بندی اسناد یکی از مهمترین روش‌های کاوش اسناد است که دسته‌بندی بدون سرپرست اسناد به گروه‌های مختلف می‌باشد. سیستم‌های رایج بازیابی اطلاعات و خوشه‌بندی اسناد بر کلمات کلیدی استوار می‌باشند. با توجه به اینکه کلمات کلیدی مختلف می‌توانند برای توصیف یک مفهوم استفاده شوند، این سیستم‌ها می‌توانند نتایج نادرست و ناقصی را ایجاد نمایند. همچنین روابط معنایی ممکن است بین کلمات موجود باشد که شناسایی آنها نیاز به استخراج دانش دامنه مورد نظر دارد. مهمترین گام‌ها در خوشه‌بندی اسناد نحوه‌ی نمایش اسناد و معیار اندازه‌گیری شباهت بین آنها است. این تحقیق بر بهبود کارایی خوشه‌بندی اسناد تمرکز دارد. الگوریتم خوشه‌بندی اسناد در سه گام پیشنهاد شده است: نمایش اسناد، اندازه‌گیری شباهت بین اسناد، سیستم استنتاج فازی به منظور اندازه‌گیری شباهت نهایی بین اسناد. در نهایت پس از انجام این سه گام، با استفاده از الگوریتم خوشه‌بندی پایین به بالا خوشه‌بندی اسناد صورت می‌پذیرد. در گام اول، اسناد بر اساس دانش دامنه به صورت یک گراف آنتولوژی نمایش داده می‌شوند. این روش بر خلاف روش مبتنی بر کلمات کلیدی، بر مفاهیم دامنه استوار می‌باشد و یک سند را بر اساس مفاهیم موجود در آن، به صورت زیرگرافی از آنتولوژی دامنه نمایش می‌دهد. مفاهیم استخراج شده گره‌های گراف را تشکیل می‌دهند. برای هر گره با توجه به فرکانس مفهوم، وزن محاسبه می‌گردد. روابط موجود بین مفاهیم سند، یال‌های گراف و میزان این ارتباط اوزان یال‌ها را مشخص می‌نماید. در گام دوم برای هر سند بر اساس نمایش گرافی استخراج شده از مرحله‌ی اول، مفاهیم کلی و جزئی و یال‌های اصلی مشخص می‌گردند. شباهت بین هر جفت از اسناد در سه مقدار و بر اساس این سه عامل محاسبه می‌شود. در گام سوم سیستم استنتاج فازی با سه ورودی و یک خروجی طراحی شده است. ورودی‌ها مفاهیم کلی، مفاهیم جزئی و یال‌های اصلی می‌باشند و خروجی میزان شباهت بین دو سند است. مجموعه‌ای از قوانین فازی برای موتور استنتاج فازی در نظر گرفته شده است که بر اساس سه شباهت ورودی مقدار شباهت نهایی را تخمین می‌زند. در نهایت بر اساس ماتریس شباهت اسناد، الگوریتم خوشه‌بندی سلسله مراتبی پایین به بالا به منظور خوشه‌بندی اسناد اعمال می‌گردد. برای ارزیابی الگوریتم پیشنهادی، نتایج با نتایج حاصل از روش‌های naïve Bayes ، دو الگوریتم مبتنی بر هستان شناسی و یک الگوریتم آماری مقایسه شده است. نتایج به دست آمده نشان می‌دهند که روش پیشنهاد شده مقادیر F-measure و Accuracy را بهبود می‌دهد. همچنین مقادیر FP و Error به میزان قابل توجهی کاهش می‌یابد.
الهام قنبری، آزاده شاکری،
دوره 7، شماره 25 - ( 9-1395 )
چکیده

یادگیری رتبه‌بندی که یکی از روش‌های یادگیری ماشین برای مدل کردن رتبه‌بندی است، امروزه کاربردهای بسیاری به خصوص در بازیابی اطلاعات، پردازش زبان طبیعی و داده‌کاوی دارد. فعالیت یادگیری رتبه‌بندی را می‌توان به دو بخش تقسیم کرد. یکی سیستم یادگیری مورد استفاده و دیگری سیستم رتبه‌بندی. در سیستم یادگیری، یک مدل رتبه‌بندی بر اساس داده‌های ورودی ساخته می‌شود. در بخش سیستم رتبه‌بندی، از این مدل ساخته شده برای پیش‌بینی رتبه‌بندی استفاده می‌شود. در این مقاله یک الگوریتم پیشنهادی مبتنی بر یادگیری جمعی به منظور یادگیری رتبه‌بندی اسناد ارائه می‌شود که این الگوریتم به صورت تکراری یادگیرهای ضعیفی بر روی درصدی از داده‌های آموزشی که توزیع آنها بر اساس یادگیر قبلی عوض شده است، می‌سازد و جمعی از یادگیرهای ضعیف را برای رتبه بندی تولید می‌کند. این الگوریتم سعی می‌کند تا با ساختن رتبه‌بند بر روی درصدی از داده‌ها، سبب افزایش دقت و کاهش زمان شود. با ارزیابی بر روی مجموعه داده لتور 3 دیده می‌شود که بهتر از الگوریتم‌های دیگری در این زمینه که مبتنی بر یادگیری جمعی هستند، عمل می‌کند.


دکتر محمدرضا غلامیان، خانم عظیمه مظفری،
دوره 8، شماره 29 - ( 2-1397 )
چکیده

هدف از انجام این پژوهش ارائه روشی برای بخش‌بندی مشتریان بانک بر مبنای مدل RFM در شرایط عدم قطعیت می‌باشد. در چارچوب پیشنهادی این پژوهش پس از تعیین مقادیر شاخص‌های مدل RFM شامل تازگی مبادله (R)، تعداد دفعات مبادله (F) و ارزش پولی مبادله (M) برای از بین بردن عدم قطعیت حاکم بر آن‌ها، از تئوری اعداد خاکستری استفاده شده و با استفاده از یک روش متفاوت به بخش‌بندی مشتریان پرداخته شده است. به این ترتیب مشتریان بانک به سه بخش یا خوشه اصلی تحت عنوان مشتریان خوب، معمولی و بد تفکیک شده اند. پس از اعتبارسنجی خوشه‌ها با استفاده از شاخص‌های دان و دیویس بولدین، ویژگی‌های مشتریان در هر یک از بخش‌ها شناسایی شده است. در پایان نیز پیشنهادهایی جهت بهبود سیستم مدیریت ارتباط با مشتری ارائه می‌گردد.



صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2018 All Rights Reserved |

Designed & Developed by : Yektaweb